Energia

3.4152352501723 (1339)
Inviato da murphy 28/02/2009 @ 16:37

Tags : energia, economia

ultime notizie
Energia: agli italiani piace rinnovabile - Corriere della Sera
Al nucleare, ritenuto «pericoloso e costoso» solo il 14% ROMA - E' il mix formato da energia solare più eolica quello che sta nel cuore degli italiani: l'80% di un campione rappresentativo della popolazione nazionale vorrebbe che fosse la fonte...
Dal «G8» il futuro dell'energia: efficienza e prezzi stabili - il Giornale
Il ministro dello Sviluppo economico, Claudio Scajola, al termine del G8 dell'Energia, non ha nascosto la propria soddisfazione per aver portato a compimento il summit internazionale ottenendo un consenso unanime sui tre documenti presentati....
Energia: Aeeg e Cncu firmano protocollo a tutela consumatori - Borsa Italiana
ROMA (MF-DJ)--L'Autorita' per l'Energia e il Consiglio nazionale dei consumatori e degli utenti (Cncu) hanno firmato un nuovo protocollo di intesa volto alla tutela dei consumatori, alla luce del recente processo di liberalizzazione e degli strumenti...
ENERGIA: PIEMONTE, NUOVE LINEE ELETTRICHE RIDUCONO CO2 - ANSA
La nuova rete, piu' efficiente, risolvera' la congestione di quella attuale, e ridurra' le perdite di energia lungo il percorso, consentendo un risparmio stimato in 21 milioni di euro annui. ''Il beneficio per i cittadini - spiega Bresso - sara'...
ECO-ENERGIA: CORDATA UE CHIEDE STOP A PARCHI EOLICI - ANSA
(ANSA) - BRUXELLES, 26 MAG - E' partita oggi da Bruxelles una crociata contro l'uso dell'energia eolica. Ad organizzare la campagna e' l'EPAW ( European Platform Against Windfarms), una ONG che rappresenta 341 federazioni ed associazioni di 18 paesi...
Energia: Italia puo' arrivare a 33% rinnovabili entro 2020 - Borsa Italiana
Un kilowattora su tre (pari al 33%) di energia elettrica puo' essere prodotto utilizzando fonti energetiche rinnovabili: e' questo l'obiettivo che si deve porre l'Italia entro il 2020 e che, se raggiunto, la porrebbe tra i primi Paesi in Europa in...
Arizona: specchi parabolici per generare energia pulita, 15:32 - La Repubblica
Come da copione, l'energia solare viene concentrata per riscaldare un fluido scambiatore di calore che servirà a far evaporare l'acqua all'interno delle condutture e mettere quindi in moto le turbine dell'impianto. L'impianto utilizza il sale fuso per...
Petrolio: prospettive e proposte al G8 Energia - La Stampa
Nel corso del G8 Energia a Roma L'IEA (Agenzia internazionale per l'energia) ha diffuso un rapporto in cui viene messa in evidenza la necessita' di trovare un meccanismo che consenta al prezzo del petrolio di trovare un equilibrio....
ECO-ENERGIA: COPAGRI,OK VIA LIBERA DDL SENATO SU AGROENERGIE - ANSA
(ANSA) - ROMA, 27 MAG - ''L'approvazione al Senato del disegno di legge sull'internazionalizzazione dell'energia ha acceso interesse e speranze per lo sviluppo delle filiere agroenergetiche con impianti di potenza inferiore al megawatt''....
G8 Energia: regolatori, serve piu' cooperazione internazionale - Borsa Italiana
E' quanto si legge nel documento redatto dalle Autorita' per l'Energia dei diversi Paesi che hanno partecipato al G8 Energia. I regolatori offrono a Governi e Parlamenti la loro "piena collaborazione nella definizione di accordi istituzionali,...

Commissario europeo per l'Energia

Il Commissario europeo per l'Energia è un membro della Commissione Europea. Attualmente (2006) il ruolo è ricoperto dal lettone Andris Piebalgs.

Il Commissario è responsabile delle politiche energetiche dell'Unione Europea e della sicurezza nucleare.

Il Commissario è responsabile, assieme al Commissario europeo per i Trasporti, della Direzione generale dell'Energia e dei Trasporti, con sede a Bruxelles e con oltre 1000 dipendenti.

Per la parte superiore



Energia

L'energia è definita come la capacità di un corpo o di un sistema di compiere lavoro. Dal punto di vista strettamente termodinamico l'energia è definita come tutto ciò che può essere trasformato in calore a bassa temperatura.

La parola energia deriva dal tardo latino energīa, a sua volta dal greco energheia, parola usata da Aristotele nel senso di azione efficace, composta da en, particella intensiva, ed ergon, capacità di agire. Fu durante il Rinascimento che, ispirandosi alla poesia aristotelica, il termine fu associato all'idea di forza espressiva. Ma fu solo nel 1619 che Keplero usò il termine nell'accezione moderna di energia.

L'unità di misura derivata del Sistema Internazionale per l'energia e il lavoro è il joule (simbolo: J), chiamata così in onore del fisico inglese James Prescott Joule e dei suoi esperimenti sull'equivalente meccanico del calore. 1 joule esprime l'energia usata (o il lavoro effettuato) per esercitare una forza di un newton per una distanza di un metro. 1 joule equivale quindi a 1 newton metro, e in termini di unità base SI, 1 J è pari a 1 kg × m2 × s-2 (in unità CGS l'unità base è l'erg 1 g × cm2 × s-2).

Dal punto di vista della fisica ogni sistema contiene, o "immagazzina", o è costituito da un determinato quantitativo di una proprietà scalare continua chiamata energia (con l'eccezione dei sistemi quantistici, dove un sistema può esistere solo su livelli energetici discreti). Per determinare la quantità di energia di un sistema si deve tenere conto delle diverse forme nelle quali l'energia si presenta entro un sistema (si veda Forme di energia per l'elenco delle forme di energia). Non esiste una maniera univoca di visualizzare l'energia. Può essere pensata come una grandezza matematica che caratterizza un sistema, utile per fare delle previsioni, ad esempio sulle strutture stabili del sistema (minimi energetici), moti possibili, ecc.

Il primo tipo di previsioni che l'energia permette di fare, sono legate a quanto lavoro un sistema è in grado di compiere. Svolgere un lavoro richiede energia, e quindi la quantità di energia presente in un sistema limita la quantità massima di lavoro che il sistema può svolgere. Nel caso unidimensionale, l'applicazione di una forza per una distanza richiede un'energia pari al prodotto del modulo della forza per lo spostamento.

Si noti, comunque, che non tutta l'energia di un sistema è immagazzinata in forma utilizzabile; quindi, in pratica, la quantità di energia di un sistema, disponibile per produrre lavoro, può essere molto meno di quella totale del sistema.

L'energia permette anche di fare altre previsioni. Infatti, grazie alla legge di conservazione dell'energia valida per sistemi chiusi, si può determinare lo stato cinetico di un sistema sottoposto ad una sollecitazione quantificabile. Questa e altre leggi, applicate all'universo nel suo intero, affermano che l'energia non si crea e non si distrugge, bensì si trasforma e si degrada (vedi i principi della termodinamica).

La celebre equazione di Einstein E = mc2, diretta derivazione della teoria della relatività ristretta, mostra come in realtà massa ed energia siano due "facce della stessa medaglia" di un sistema fisico. Da questa semplice equazione si evince infatti che la massa può essere trasformata in energia, e viceversa.

Spesso con la locuzione "energia" + aggettivo si intende la fonte attraverso quale è possibile una produzione di corrente elettrica.

Per la parte superiore



Energia nucleare

Schema di una reazione di fissione nucleare

Con energia nucleare si intendono tutti quei fenomeni in cui si ha la produzione di energia in seguito a trasformazioni nei nuclei atomici. L'energia nucleare, insieme alle fonti rinnovabili e le fonti fossili, è una fonte di energia primaria, ovvero è presente in natura e non deriva dalla trasformazione di altra forma di energia.

Le reazioni che coinvolgono l'energia nucleare sono principalmente quelle di fissione nucleare, di fusione nucleare e quelle legate alla radioattività (decadimento radioattivo).

Nelle reazioni di fissione (sia spontanea, sia indotta), nuclei di atomi con alto numero atomico (pesanti) come, ad esempio, l'uranio, il plutonio e il torio si spezzano producendo nuclei con numero atomico minore, diminuendo la propria massa totale e liberando una grande quantità di energia. Il processo di fissione indotta viene usato per produrre energia nelle centrali nucleari. Le prime bombe atomiche, del tipo di quelle sganciate su Hiroshima e Nagasaki, erano basate sul principio della fissione. Si deve notare che in questo contesto il termine atomico è assolutamente inesatto o almeno inappropriato in quanto i processi coinvolti sono viceversa di tipo nucleare, coinvolgendo i nuclei degli atomi e non gli atomi stessi.

Nelle reazioni di fusione, i nuclei di atomi con basso numero atomico, come l'idrogeno, il deuterio o il trizio, si fondono dando origine a nuclei più pesanti e rilasciando una notevole quantità di energia (molto superiore a quella rilasciata nella fissione, a parità di numero di reazioni nucleari coinvolte).

In natura le reazioni di fusione sono quelle che producono l'energia proveniente dalle stelle. Finora, malgrado decenni di sforzi da parte dei ricercatori di tutto il mondo, non è ancora stato possibile realizzare, in modo stabile, reazioni di fusione controllata sul nostro pianeta, anche se è in sviluppo il progetto ITER, un progetto che con il successore DEMO darà vita alla prima centrale nucleare a fusione del mondo. È invece attualmente possibile ottenere grandi quantità di energia attraverso reazioni di fusione incontrollate, come ad esempio nella bomba all'idrogeno.

Le reazioni di decadimento radioattivo coinvolgono i nuclei di atomi instabili, che tramite processi di emissione/cattura di particelle subatomiche (radioattività) tendono a raggiungere uno stato di maggior equilibrio, in conseguenza della diminuzione della massa totale del sistema. Quelle in cui si ha la maggiore quantità di energia liberata sono i processi di diseccitazione gamma: le particelle interessate sono fotoni generalmente ad alta energia, ovvero radiazioni elettromagnetiche alle frequenze più alte (anche se più precisamente si ha sovrapposizione fra le frequenze delle emissioni X di origine atomica e gamma di origine nucleare).

La fissione consiste nel rompere il nucleo dell'atomo per farne scaturire notevoli quantità di energia: Quando un neutrone colpisce un nucleo fissile (ad esempio di uranio-235), questo si spacca in due frammenti e lascia liberi altri due o tre neutroni (mediamente 2.5). La somma delle masse dei due frammenti e dei neutroni emessi è leggermente minore di quella del nucleo originario e di quelle del neutrone che lo ha fissionato: la massa mancante si è trasformata in energia. La percentuale di massa trasformata in energia si aggira attorno allo 0.1%, cioè per ogni kg di materiale fissile, 1 g viene trasformato in energia. Se accanto al nucleo fissionato se ne trovano altri in quantità sufficiente e in configurazione geometrica adatta (massa critica), si svilupperà una reazione a catena in grado di autosostenersi per effetto delle successive fissioni dei nuclei causate dai neutroni secondari emessi dalla prima fissione. La fissione nucleare dell'uranio e del plutonio è ampiamente sperimentata ed ingegnerizzata da circa 50 anni. Nell'agosto 2007, 439 reattori nucleari di potenza commerciali, producono il 16% dell'intera energia elettrica mondiale. Nei 30 Paesi dell'OCSE l'energia elettronucleare costituisce il 30% del totale dell'energia elettrica prodotta. A parte il rischio di incidenti, il maggiore problema ancora insoluto è costituito dalle scorie radioattive, che rimangono pericolose per migliaia se non milioni di anni.

L'altro metodo per ottenere energia dall'atomo è la fusione nucleare. Essa è esattamente opposta alla fissione: invece di spezzare nuclei pesanti in piccoli frammenti, si uniscono nuclei leggeri (a partire dall'idrogeno, composto da un solo protone) in nuclei più pesanti: la massa di questi ultimi è minore della somma di quelli originari, e la differenza viene emessa come energia sotto forma di raggi gamma ad alta frequenza e di energia cinetica dei neutroni emessi. La percentuale di massa trasformata in energia si aggira attorno all'1%, un quantitativo enorme. Perché la fusione avvenga, i nuclei degli atomi devono essere fatti avvicinare nonostante la forza di repulsione elettrica che tende a respingerli gli uni dagli altri, e sono quindi necessarie temperature elevatissime, milioni di gradi centigradi. La fusione nucleare avviene normalmente nel nucleo delle stelle, compreso il Sole, dove tali condizioni sono normali. A causa di queste difficoltà, al giorno d'oggi l'uomo non è finora riuscito a far avvenire la fusione in modo controllato e affidabile se non per qualche decina di secondi (quello incontrollato esiste: la bomba termonucleare). Gli esperimenti odierni si concentrano sulla fusione di alcuni isotopi dell'idrogeno, il deuterio e il trizio, che fondono con maggiore facilità rispetto all'idrogeno comune prozio. La fusione nucleare per ora è in fase di ricerca e - a differenza della fissione nucleare - è stata realizzata in impianti realizzati dall'uomo solo per pochi secondi. Dopo oltre 50 anni di sperimentazione, gli addetti ai lavori prevedono che la realizzazione di un reattore a fusione operativo richiederà ancora alcuni decenni.

Il funzionamento di una centrale nucleare a fissione del tipo ad acqua leggera (il più diffuso) è abbastanza semplice: viene pompata dell'acqua attraverso il nocciolo del reattore che la fa evaporare attraverso il calore provocato dalla fissione dell'uranio. Il vapore viene quindi inviato nelle turbine che trasferiscono quindi la propria energia meccanica all'alternatore il quale genera la corrente elettrica.

Con reattore si intende uno spazio confinato all'interno del quale far avvenire le reazioni di fissione in maniera controllata. A partire dagli anni '40 del '900 sono stati ideati moltissimi tipi di reattore, con caratteristiche e scopi diversi. Lo scopo iniziale è stato la produzione di materiale adatto alla realizzazione degli arsenali atomici; solo in un secondo tempo a questa motivazione si è affiancata la produzione di energia elettrica. Non a caso i paesi che vantano il maggior numero di centrali sono anche dotate di armi nucleari. Tutti i reattori sono dotati di un sistema di barre di controllo che permette di regolare la reazione e quindi la potenza generata, nonché di aperture per consentire l'inserimento del materiale fissile e l'estrazione del "combustibile" esausto. Il tutto è racchiuso in un contenitore di acciaio inossidabile pieno di acqua o di un altro moderatore (spesso grafite) che permette alla reazione di svilupparsi in modo regolare. L'acqua è molto spesso anche usata come fluido termovettore, cioè per raffreddare il nocciolo del reattore (che altrimenti fonderebbe) e nel contempo -scaldandosi- per generare vapore da inviare alle turbine. In taluni reattori anziché normale acqua vengono usate altre sostanze, quali gas o leghe metalliche a basso punto di fusione (per esempio contenenti sodio o piombo). In ogni caso tali fluidi di raffreddamento -essendo radioattivi- circolano in un circuito chiuso. Il "combustibile" di gran lunga più diffuso è l'uranio arricchito (cioè con una percentuale di uranio-235 maggiore del normale), ma non è l'unico materiale fissile utilizzabile: la ragione per cui si sono sviluppati reattori ad U235 è che essi producono plutonio, utile in tempi di corsa agli armamenti. Di contro le scorie hanno una "vita" molto più lunga che non -ad esempio- se si utilizzasse torio, come proposto dal Nobel Carlo Rubbia.

Il procedimento di fissione nucleare (come peraltro quello di fusione, seppur in maniera molto inferiore) produce materiali residui ad elevata radioattività. Si tratta di pastiglie di combustibile esaurito (uranio, plutonio ed altri radioelementi) che vengono estratte dal reattore per essere sostituite, nonché dei prodotti di fissione. Questo materiale, emettendo delle radiazioni penetranti, è molto radiotossico e richiede dunque precauzioni nel trattamento di smaltimento. La radioattività degli elementi estratti da un reattore si riduce nel tempo secondo il fenomeno naturale del dimezzamento ma i tempi necessari a farla rientrare entro standard di accettabilità biologica per il corpo umano sono lunghi. I tempi di decadimento radioattivo variano inoltre a seconda dell'elemento oscillando da pochi giorni a centinaia di migliaia di anni. Esistono attualmente due modi principali per smaltire le scorie, rigorosamente legati a preliminari studi di natura geologica riguardanti il sito di destinazione: per le scorie a basso livello di radioattività si tende a ricorrere al cosiddetto deposito superficiale, ovvero il confinamento in aree terrene protette e contenute all'interno di barriere ingegneristiche; per le scorie a più alto livello di radioattività si ricorre invece al deposito geologico, ovvero allo stoccaggio in bunker sotterranei schermati. Inoltre vengono sfruttati anche degli impianti di rigenerazione in grado di estrarre l'uranio, il plutonio e gli altri attinoidi (detti minori, prevalentemente nettunio, americio e curio) dalle scorie e renderlo riutilizzabile nel processo di fissione nucleare. Le scorie inoltre potranno essere riprocessate in altre tipologie di reattori (nuclear transmuters o trasmutatori con fattore di conversione c < 0.7) con auspicata produzione collaterale di energia elettrica.Nel caso esse vengano riprocessate col solo obiettivo di diminuirne la radioattività,sarà necessario un tempo di almeno 40 anni per assistere a un calo della radioattività del 99,9%. Un ulteriore metodo in fase di studio per la trasmutazione delle scorie nucleari (ADS) si basa sull'impiego di un acceleratore di protoni di alta energia (600 MeV - 2 GeV), accoppiato con un reattore nucleare subcritico, avente come barre di combustibile il materiale da trasmutare sotto forma di MOX o altro. Anche in questo caso si ipotizza la possibilità che il sistema sia energeticamente autosufficiente, con la produzione collaterale di energia.

Per la parte superiore



Energia eolica

Capacità mondiale installata e previsioni 1997-2010, Fonte: WWEA

L'energia eolica è il prodotto della conversione dell'energia cinetica del vento in altre forme di energia. Attualmente viene per lo più convertita in elettrica tramite una centrale eolica, mentre in passato l'energia del vento veniva utilizzata immediatamente sul posto come energia motrice per applicazioni industriali e pre-industriali. Prima tra tutte le energie rinnovabili per il rapporto costo/produzione, è stata anche la prima fonte energetica rinnovabile usata dall'uomo.

Essa è pensata tenendo presente sia una produzione centralizzata in impianti da porre in luoghi alti e ventilati, sia un eventuale decentramento energetico, per il quale ogni Comune ha impianti di piccola taglia, composti da un numero esiguo di pale (1-3 turbine da 3-4 megawatt) con le quali genera in loco l'energia consumata dai suoi abitanti. Il tempo di installazione di un impianto è molto breve; fatti i rilievi sul campo per misurare la velocità del vento e la potenza elettrica producibile, si tratta di trasportare le pale eoliche e fermarle nel terreno. Il tempo di progettazione e costruzione di altre centrali (idroelettriche, termoelettriche,etc.) è superiore a 4 anni.

Nonostante le intenzioni siano le migliori, la mancanza di una legge quadro o di un testo unico sulle energie eoliche, diversamente dal solare, è considerata una delle cause della lenta diffusione della tecnologia rispetto all'estero. Benché l'eolico sia l'energia meno costosa, non è né massicciamente richiesto dai produttori elettrici che potrebbero rivenderlo al costo del kWh attuale con maggiori profitti.

In Olanda erano utilizzati per pompare l'acqua dei polder, migliorando notevolmente il drenaggio dopo la costruzione delle dighe. I mulini olandesi erano i più grandi del tempo, divennero e rimasero il simbolo della nazione. Questi mulini erano formati da telai in legno sui quali era fissata la tela che formava, così, delle vele spinte in rotazione dal vento. Nel corso del XIX secolo entrarono in funzione migliaia di mulini a vento sia in Europa, sia in America, soprattutto per scopi di irrigazione. In seguito, con l'invenzione delle macchine a vapore, vennero abbandonati per il costo del carbone, allora a buon mercato.

Negli anni settanta l'aumento dei costi energetici ha ridestato l'interesse per le macchine che utilizzano la forza del vento. Così molte nazioni hanno aumentato i fondi per la ricerca e lo sviluppo dell'energia eolica.

Nonostante la pesante crisi finanziaria, il 2008 è stato un anno altro anno record per l'energia eolica, con oltre 27'000 MW di nuova potenza installata in tutto il mondo, pari alla potenza generata da 27 centrali nucleari con una potenza media di 1'000 MW. Negli anni precedenti la nuova potenza installata è stata rispettivamente di 20'000 MW (2007), 15'000 MW (2006) e di 11'000 MW (2005). Questa crescita esponenziale ha portato ad avere già alla fine del 2008, una potenza cumulata totale di oltre 120'000 MW, pari ad oltre l' 1,5% del fabbisogno mondiale di energia, e si prevede che già alla fine di questo anno, si possa arrivare a sfiorare la quota del 2%. Con questi alti tassi di crescita, si stima che ogni tre anni, si possa incrementare di 1 punto percenentuale la copertura del fabbisogno mondiale di energia tramite questa fonte di energia pulita, che anno dopo anno arriverà a conquistare una sempre maggiore quota mondiale.

Per gli USA il 2008 è stato un anno record, che ha visto un boom della nuova potenza installata, pari a oltre 8'300 MW, sbaragliando il loro precedente record mondiale di 5'200 MW del 2007. In questo modo gli Stati Uniti hanno scalzato la Germania in testa e sono diventati i leader mondiali con una potenza eolica cumulata di oltre 25'000 MW. La Germania si ritrova in seconda posizione con una potenza totale di 23'900 MW, avendo installato nel 2008 1'665 MW, in linea con l’anno precedente 2007 dove ne erano stati installati 1'667. La Spagna tiene la terza posizione mondiale con 16'700 MW di potenza cumulata e nel 2008 ha installato 1'600 MW in netta frenata rispetto il 2007 dove se ne erano prodotti oltre 3'600. Un anno record è stato anche per la Cina che ha quasi raddoppiato rispetto il 2007 la nuova potenza installata, passando dai 3'600 MW ai 6'300 di quest’anno, che rappresentano il secondo record mondiale dopo quello degli USA. Ciò ha permesso alla Cina di superare l’India e di attestarsi in quarta posizione con 12'200 MW totali. L’India si ritrova così in quinta posizione con una potenza cumulata che si avvicina ai 10'000 MW e quest’anno ha installato 1'800 MW in linea con l’anno precedente che ne aveva visti installati 1'700.

Grazie ai recenti sviluppi tecnologici l'energia eolica inizia ad essere economicamente vantaggiosa. Il costo di installazione è relativamente basso (circa 1,5€ per Watt, se raffrontato ad altre tecnologie come ad esempio il fotovoltaico (circa 5€ per Watt).

Al 2004, secondo l'International Energy Agency, il costo medio di produzione dell'energia eolica sarebbe compreso tra 0,04-0,08 €/kWh, anche se stime più recenti indicherebbero un costo ancora inferiore che farebbe presupporre nel breve termine un costo di 0,03 €/kWh del tutto concorrenziale rispetto ai costi dell'energia generata da fonti convenzionali (negli ultimi dieci anni la riduzione del costo di produzione di energia da fonti eoliche si è attestata sul 30%-50% e si prevede che la tendenza rimanga costante).

Attualmente il costo di installazione in Italia, facendo riferimento ad impianti con una potenza nominale superiore ai 600 kW, varia tra gli 850 e i 1300 €/kW, il prezzo ovviamente varia secondo la complessità dell'orografia del terreno in cui l'impianto vada installato. Detto questo una centrale di 10 MW, allacciata quindi alla rete in AT, costerebbe tra gli 8 e i 13 milioni di euro, mentre per una centrale allacciata alla rete di MT (3-4 MW) il costo si comprime tra 0,9 e 1,2 milioni di Euro al MW. Gli unici capitoli di spesa totale riguardano solamente l'installazione e la manutenzione, essendo la fonte produttrice di energia (il vento) gratis. In relazione alla superficie occupata, una centrale eolica non toglie la possibilità di continuare le precedenti attività su quel terreno (tipo pastorizia ecc...). In alcuni paesi come la Danimarca la corrente prodotta con questo sistema ha raggiunto lo straordinario obiettivo del 23% del fabbisogno nazionale. Altri stati all'avanguardia sono la Spagna 9% e la Germania 7%. L'Italia invece è settima nella classifica delle nazioni con le maggiori capacità installate. Tra il 2000 e il 2006, la capacità mondiale installata è quadruplicata.

Per "minieolico" si intendono piccoli impianti, da installare in parchi o spiagge di fattorie, villaggi o ville. Per questi impianti casalinghi il prezzo di installazione risulta più elevato, attestandosi attorno ai 1500-3000 € al kW, questo perché il mercato di questo tipo di impianti è ancora poco sviluppato, anche a causa delle normative che, a differenza degli impianti fotovoltaici, in quasi tutta Europa ne disincentivano l'uso, sulla scia di un pensiero diffuso soprattutto nei decenni passati, che vedeva nelle turbine eoliche grossi problemi di impatto paesaggistico.

La turbina a vento di Savonius è un tipo di turbina a vento ad asse verticale, utilizzata per la conversione di coppia dell'energia del vento su un albero rotante. Inventata dall'ingegnere finlandese Sigurd J Savonius nel 1922, e brevettata nel 1929, è una delle turbine più semplici.

Con l'espressione eolico off-shore si intendono gli impianti installati ad alcune miglia dalla costa di mari o laghi, per meglio utilizzare la forte esposizione alle correnti di queste zone.

In questo senso, la Spagna ha avviato uno studio di fattibilità della durata di un anno sull'intero territorio nazionale, per determinare le aree maggiormente ventilate e con continuità, e quindi i siti candidati all'installazione di centrali di taglia medio-grande. La Spagna ha esteso le misurazioni mediante centraline fisse e mobili anche a tutta la costa, oltre che a zone collinari e di montagna, scegliendo di battere la strada dell'eolico off-shore.

Dopo aver diffuso microimpianti nelle singole abitazioni, e un decentramento energetico, ora punta a realizzare pochi impianti centralizzati per la produzione di alcuni gigawatt ciascuno.

Ad Havsui, in Norvegia, sorgerà il più grande impianto eolico al mondo, che dovrà fornire 1,5 Gigawatt di potenza elettrica. Si tratta di un eolico off-shore.

Il governo Inglese sembra intenzionato a presentare un progetto per realizzare un'estesa serie di generatori off-shore in grado entro il 2020 di produrre abbastanza corrente elettrica da alimentare le utenze domestiche del Regno Unito. Il piano prevede impianti per 20 GWatt che si aggiungeranno agli 8 GWatt di impianti già deliberati.

Nel 2008 il Fondo di Inversioni della Corona Britannica, che possiede le aree marittine della Gran Bretagna, fino a ~20 km dalla costa, con il programma Clipper's Britannia Project, ha deciso di investire in giganteschi aerogeneratori off-shore, di potenza superiore ai 5 Mw/h.

Installata al largo della Scozia, Beatrice è la più potente turbina eolica del mondo. Costata 41 milioni di euro, è la prima fase di un progetto europeo per realizzare una maxi-centrale. Beatrice è installata nel mare del Nord, al largo della costa scozzese, dove il vento è forte e costante: reggerà alle onde più devastanti e dalla costa il suo impatto visivo e d’inquinamento acustico è minimo.

Il nome in codice del progetto è infatti DOWNVIND, che sta per Distant Offshore Windfarms with No Visual Impact in Deepwater (centrale eolica distante dalla costa in acque profonde e senza impatto visivo).

L'energia eolica ha una natura intermittente. Questo ha condotto a numerosi metodi di immagazzinamento all'energia, inclusa la produzione di idrogeno attraverso l'elettrolisi dell'acqua. L'idrogeno è susseguentemente usato a generare elettricità quando la domanda d'energia non può essere sostenuta solo dal vento. L'energia immagazzinata nell'idrogeno verrà convertita in energia elettrica attraverso celle a combustibile o con un motore a combustione collegato a un generatore elettrico. In Danimarca, a maggio 2007 è stata costruita la prima centrale europea a eolico-idrogeno.

L'efficienza massima di un impianto eolico può essere calcolata utilizzando la Legge di Betz, che mostra come l'energia massima che un generatore qualunque possa produrre (ad esempio una pala eolica) sia il 59,3% di quella posseduta dal vento che gli passa attraverso. Tale efficienza è molto difficile da raggiungere, e un aerogeneratore con un'efficienza compresa tra il 40% al 50% viene considerato ottimo.

Gli impianti eolici consentono grosse economie di scala, che abbattono il costo del chilowattora elettrico con l'utilizzo di pale lunghe ed efficienti dalla produzione di diversi megawatt ciascuna.

Tali impianti hanno però un rilevante impatto ambientale, per quanto riguarda il paesaggio. Una maggiore potenza elettrica in termini di megawatt significa grossi risparmi sui costi di produzione, ma anche pale più lunghe e visibili da grandi distanze. Un colore verde, nel tentativo di "mimetizzare" gli aerogeneratori all'interno del paesaggio, attenua in minima parte il problema, date le altezze degli impianti. Per questo motivo, nonostante la suddetta maggiore economicità ed efficienza degli impianti di grossa scala, per lo più si decide per una soluzione di compromesso tra il ritorno economico, che spinge verso impianti più grandi, e l'impatto paesaggistico.

I generatori eolici a partire dal 1985 hanno migliorato drasticamente il rendimento, dimensioni e costi e continuano a farlo: ecco perché i numeri dati in seguito sono da ritenersi provvisori. Tali generatori sono riusciti a passare da una produzione di pochi kilowatt di potenza, a punte di 3 MW per i più efficienti e una produzione tipica del mercato attuale di 1,5 MW, con una velocità del vento minima di 3-4 m/s.

Un generatore sia ad asse verticale che orizzontale richiede una velocità minima del vento (cut-in) di 3-5 m/s ed eroga la potenza di progetto ad una velocità del vento di 12-14 m/s. Ad elevate velocità (20-25 m/s, velocità di cut-off) l'aerogeneratore viene bloccato dal sistema frenante per ragioni di sicurezza. Il bloccaggio può avvenire con veri e propri freni che bloccano il rotore, o con metodi che si basano sul fenomeno dello stallo e "nascondono le pale al vento".

Esistono anche generatori a pale mobili che seguono l'inclinazione del vento, mantenendo costante la quantità di elettricità prodotta dall'aerogeneratore, e a doppia elica, per raddoppiare la potenza elettrica prodotta. Non mancano generatori silenziosi; il problema principale resta la dimensione delle pale e la mancanza di generatori a "micropale" non visibili a occhio nudo che risolverebbero l'impatto negativo sul paesaggio.

Una notevole potenza elettrica viene dissipata nel rotore che deve avere una velocità di 3000 giri/minuto per erogare una corrente alla frequenza di rete di 50 hertz. I giri al minuto dell'aerogeneratore sono molto variabili come lo è la velocità del vento; ma la frequenza di rete deve essere costante a 50 hertz, perciò i rotori vengono collegati a una serie di inverter prima di immettere l'energia in rete.

La cinematica del generatore eolico è caratterizzata da bassi attriti, assenza di surriscaldamento e di un sistema di refrigeranti (olio ed acqua) e un costo di manutenzione pressoché nullo.

I principali produttori mondiali di aerogeneratori sono tedeschi e danesi: Vestas, Enercon, Siemens, Gamesa Eolica, GE Wind, Nordex, NedWind, Enron Wind. Sono circa 26 le aziende che producono gli aerogeneratori.

Un generatore eolico ad asse verticale (VAWT - Vertical Axis Wind Turbines) è un tipo di macchina eolica contraddistinta da una ridotta quantità di parti mobili nella sua struttura, il che le conferisce un'alta resistenza alle forti raffiche di vento, e la possibilità di sfruttare qualsiasi direzione del vento senza doversi riorientare continuamente. È una macchina molto versatile, adatta all'uso domestico come alla produzione centralizzata di energia elettrica nell'ordine di Gigawatt.

Gli aerogeneratori tradizionali hanno, quasi senza eccezioni, l’asse di rotazione orizzontale. Questa caratteristica è il limite principale alla realizzazione di macchine molto più grandi di quelle attualmente prodotte: i requisiti statici e dinamici che bisogna rispettare non consentono di ipotizzare rotori con diametri molto superiori a 100 metri e altezze di torre maggiori di 180 metri. Queste dimensioni, per altro, riguardano macchine per esclusiva installazione off-shore. Le macchine on-shore più grandi hanno diametri di rotore di 70 metri e altezze di torre di 130 metri. In una macchina siffatta il raggio della base supera i 20 metri. La velocità del vento cresce con la distanza dal suolo. Questa è la principale ragione per la quale i costruttori di aerogeneratori tradizionali spingono le torri a quote così elevate. La crescita dell’altezza, insieme al diametro del rotore che essa rende possibile, sono la causa delle complicazioni statiche dell’intera macchina, che impone fondazioni complesse e costose e strategie sofisticate di ricovero in caso di improvvise raffiche di vento troppo forte.

Macchine eoliche ad asse verticale sono state concepite e realizzate fin dal 1920. La sostanziale minore efficienza rispetto a quelle con asse orizzontale (30%) ne ha di fatto confinato l’impiego nei laboratori. L'unica installazione industriale oggi esistente è quella di Altamont Pass in California, realizzata dalla FloWind nel 1997. L’installazione è in fase di smantellamento, a causa delle difficoltà economiche del costruttore, che è in bancarotta.

Negli ultimi tempi, tuttavia, si è cercato di ottimizzare molto queste macchine, rendendole molto competitive: taluni asseriscono che gli ultimi prototipi, funzionando in molte più ore l'anno rispetto a quelle ad asse orizzontale, hanno un rendimento complessivo maggiore.

Esiste in Italia un progetto radicalmente innovativo che consiste proprio in una centrale eolica ad asse di rotazione verticale. Si tratta del Kite Wind Generator o Kitegen. Questo elimina tutti i problemi statici e dinamici che impediscono l’aumento della potenza (cioè delle dimensioni) ottenibile dagli aerogeneratori tradizionali.

Il problema di "catturare" il vento è risolto dall'idea di impiegare profili alari di potenza (Power Kites) solidali al perimetro della turbina. I profili alari di potenza volano secondo traiettorie prestabilite, che permettono di trasformare la forza esercitata sui cavi in una coppia complessiva concorde che mette in rotazione le braccia di una giostra ad asse verticale. In pratica, i profili alari di potenza sono le pale della turbina, che le consentono di ruotare intorno ad un asse verticale, semplificando enormemente i problemi di fondazione e di rigidezza.

Ad agosto 2006 è stato costruito un primo prototipo dal nome Mobilegen.

Un più recente approccio allo sfruttamento dell'energia eolica, intende proporre un metodo innovativo per sfruttare l'energia dei venti ad alta quota.

Il metodo si basa sull'utilizzo di una coppia di palloni aerostatici che stazionano a quote superiori agli 800 metri e frenati a terra da cavi che fungono anche da elemento di trasmissione del moto.

Quando un pallone viene trascinato orizzontalmente dalla forza del vento che spinge sulla superficie della sua vela aperta, l'altro pallone, a vela chiusa, viene riportato sulla verticale della piattaforma trainato dallo stesso cavo collegato al primo pallone.

Al termine dello srotolamento del cavo, giunto a fine corsa, un meccanismo automatico opera la chiusura delle ali a vela del primo pallone e opera l'apertura delle ali a vela del secondo; in questo modo le funzioni dei due palloni si invertono replicando la stessa dinamica.

Questa tecnologia permette di ottenere energia mediante il continuo movimento alternativo del cavo agganciato a due palloni aerostatici.

Un generatore eolico ad asse orizzontale (HAWT - Horizontal Axis Wind Turbines) è formato da una torre in acciaio di altezze che si aggirano tra i 60 e i 100 metri sulla cui sommità si trova un involucro (gondola) che contiene un generatore elettrico azionato da un rotore a pale lunghe circa 20 metri (solitamente 2 o 3). Esso genera una potenza molto variabile: tipicamente 600 chilowatt che equivale al fabbisogno elettrico giornaliero di 500 famiglie.

Il mulino a vento è un esempio storico di generatore ad asse orizzontale. Come i generatori ad asse verticale anche quelli ad asse orizzontale richiedono una velocità minima di 3-5 m/s ed erogano la potenza di progetto ad una velocità del vento di 12-14 m/s. Ad elevate velocità (20/25 m/s) l'aerogeneratore viene bloccato dal sistema frenante per ragioni di sicurezza.

Per la parte superiore



Source : Wikipedia